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 ABSTARCT    

Leishmaniasis, a significant public health concern in resource-limited areas, is caused by the parasitic protozoan Leishmania. 
The insufficiency of current treatments underscores the urgent need for effective vaccines. Researchers have pinpointed 
promising vaccine targets through comprehensive antigen screening methods, showing their ability to trigger protective 
immune responses against Leishmania. The delicate balance between pro-inflammatory (Th1) and anti-inflammatory (Th2) 
responses in Leishmaniasis underscores the immune regulation complexity vital for fighting the infection. Leveraging 
bioinformatics tools epitope prediction targeting KMP11, GP63, and LACK antigens aims to induce both humoral and cellular 
responses. 
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1. Introduction 

eishmaniasis, a neglected tropical disease 
caused by the protozoan parasite Leishmania, 
affects millions globally, particularly in 
resource-limited regions (1). The intricate life 

cycle of Leishmania involves transmission via infected 
sandfly bites, resulting in diverse clinical 
manifestations ranging from cutaneous to visceral 
forms of the disease (Figure 1). The inadequacy of 
current treatment options underscores the urgent 
requirement for efficacious and safe vaccines to 
manage and prevent Leishmaniasis (2). 

Researchers have directed their efforts towards 
identifying antigenic proteins expressed at various 
stages of the parasite's life cycle to uncover novel 
vaccine targets through high-throughput and highly 
accurate methods (3, 4). This pursuit has uncovered 
several promising vaccine candidates, such as 
glycoprotein 46 (gp46), cathepsin L-like and B-like 
proteases, histone H2A, glucose-regulated protein 78 
(grp78), and stress-inducible protein 1 (STI-1) (5). 
These antigens have demonstrated the ability to 
provoke protective immune responses against 
Leishmania infection in preclinical investigations. 

The immune response to Leishmania infection is 
intricate, involving a delicate equilibrium between 

pro-inflammatory (Th1) and anti-inflammatory (Th2) 
cytokines (6, 7). 

Th1-mediated responses, characterized by IFN-γ 
production, play a pivotal role in controlling parasite 
growth by activating macrophages to eliminate 
intracellular parasites (4, 7). Conversely, Th2- 
mediated responses can support parasite survival and 
disease progression. Understanding the interplay 
between these immune responses is vital for 
designing effective vaccines against Leishmaniasis. 

The field of bioinformatics and computational 
biology has transformed vaccine development by 
facilitating the prediction of immunodominant 
epitopes and antigenic proteins. In silico 
methodologies enable swift screening of potential 
vaccine candidates, reducing the time and resources 
needed for experimental validation (3). Leveraging 
these computational tools, researchers can craft 
epitope prediction that target specific immune 
pathways to bolster protective immunity against 
Leishmania. In a recent study, epitopes were devised 
for KMP11, GP63, and LACK antigens using specific 
bioinformatic tools. 

 

 

Figure 1. Transmission and life cycle of Leishmania infantum in the vector and host body (Design by Authors, 2024). 

 

2. Protocol 

2.1 Obtain the amino acid sequence for the target 
proteins 

The FASTA-formatted amino acid sequences for L. 
infantum GP63 (Accession no. QJF54184), KMP11 
(Accession no. AGV77135), and LACK (Accession no. 
UQI50440) were collected from the National Center 
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for Biotechnology Information (NCBI) website located 
at http://www.ncbi.nlm.nih.gov (8). 

2.2 Forecasting the location of antigenic epitopes 

In this step we opted to predict CTL epitopes, linear 
B cell epitopes, and MHC class I and II epitopes. To do 
this, different bioinformatics servers capable of 
identifying these sorts of epitopes were used. 

a. Prediction and screening of linear B cell epitope: 
Linear B cell epitopes were predicted utilizing the (B 
cell epitope prediction) section of the IEDB server 
which located at http://tools.iedb.org/bcell/ . The 
mentioned server method was also set to Bepipred 
Linear Epitope Prediction 2.0. BepiPred is a predictive 
method that identifies the location of linear B-cell 
epitopes. It achieves this by utilizing a hidden Markov 
model and propensity scale method, which allow it to 
determine which residues are part of an epitope based 
on their scores. Residues with scores higher than the 
threshold value of 0.35 are colored yellow on the 
graph and labeled with "E" in the output table. The 
accuracy of the prediction method for 
epitope/nonepitope predictions is determined by a 
table that summarizes data from a large benchmark 
calculation that included almost 85 B cell epitopes (9). 

b. Cytotoxic T lymphocyte (CTL) epitope prediction 
and screening: In this section we used CTLPRED server 
to predict the CTL epitopes which available at 
http://crdd.osdd.net/raghava/ctlpred/ . The approach 
of this server based on two form of machine learning 
techniques such as Artificial Neural network (ANN) 
and support vector machine (SVM). Based on these 
two processes of server, the methods also allow for 
consensus and combined prediction (10). 

c. Prediction and selection approach for MHC class 
1 and MHC class 2 epitopes: To predict MHC class 1 
epitopes, we utilized the T cell class I tool provided on 
the IEDB website at https://nextgentools.iedb.org/. 
The tool employs Artificial Neural Networks (ANNs) 
and utilizes data on 177 MHC molecules from various 
species such as humans, mice, cattle, primates, pigs, 
horses, and dogs. The IEDB recommends using 
percentile rank as the primary metric for ranking 
binding predictions, with a percentile rank of less than 
or equal to 1% covering 80% of the immune response 
for many alleles (11). In the following to anticipate 
MHC class 2 epitopes, the MHC2PRED at 
http://crdd.osdd.net/raghava/mhc2pred/ address 
was used. In the algorithm of this server, Support 
Vector Machine (SVM), a machine learning approach, 

was used to construct a prediction strategy for MHC 
binding. Individual amino acid sequences represented 
by binary input were used to train SVM. Each amino 
acid in a 9-mer peptide was turned into a 20-
dimensional vector, giving each peptide a 180-
dimensional vector. Non-binders were classified as -1, 
whereas binders were designated as +1. 
Experimentation was used to identify the best kernel 
type for data categorization, such as RBF, Polynomial, 
Linear, and Sigmoid. Finally, by methodically 
modifying the parameters and analyzing prediction 
performance, the kernel features and regulatory 
parameter C were then tuned (12). 

 

3. Results and Discussion 

3.1 Predicted epitopes 

a. B-Cell Epitope Prediction: The high-scored linear 
and conformational B-cell epitopes that were predicted 
within the full-length of the designed vaccine by the IEDB, 
also in combination with BepiPred linear epitope 
prediction 2.0, respectively (Table 1). 

b. CTL Epitopes Prediction: The high-ranked CTL 
epitopes (9-mer length) with a binding affinity score 
were selected as final CTL epitopes in three antigens 
(Table 2). 

c. MHC Peptide Prediction: To predict the binding 
epitopes for Major Histocompatibility Complex (MHC) 
class I, we utilized the next-generation tools of 
Immune Epitope Database (IEDB, available at 
https://nextgen-tools.iedb.org/tc1) and focused on 9- 
mer length peptides and human HLAs. Specifically, 
based on IEDB recommended method 2020.09 
(NetMHCpan EL 4.1) (13), most reference HLA allele 
set used for prediction; e.g. 16 class A alleles (01:01, 
02:01, 02:03, 02:06, 03:01, 11:01, 23:01, 24:02, 26:01, 
30:01, 30:02, 31:01, 32:01, 33:01, 68:01 and 68:02) 
and 11 class B alleles (07:02, 08:01, 15:01, 35:01, 
40:01,44:02, 44:03, 51:01, 53:01, 57 l:01 and 58:01) 
(Table 3-5). 

For MHC class II binding epitopes, we employed the 
MHC2PRED server and selected several peptides for 
each antigen, ensuring that they had a percentile rank 
of ≤1 and an IC50 value of ≤50. These stringent criteria 
were used to identify peptides with high binding 
scores for MHC class I and II. The specific peptides and 
their corresponding binding scores can be found in 
Table 6-8. 
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Table 1. B-cell epitopes predicted by the IEDB. 

Antigen Start End Peptide Length 

KMP11 

7 7 E 1 

9 10 SA 2 

13 14 KR 2 

16 76 
DEEFNRKMQALNAKFFADKPDESTLSPEMKE 

HYEKFERMIKEHTEKFNKKMHEHSEHFKQK 
61 

78 89 AELLEQQKAAQY 12 

LACK 

29 48 NPDRHSVDSDYGLPSHRLEG 20 

81 90 NGQCQRKFLK 10 

125 135 CMHEFLRDGHE 11 

168 178 GGKCERTLKGH 11 

GP63 

16 20 QLHTE 5 

23 56 KVRQVQDKWNATGMVDEICGDFKVPPAHITEGFS 34 

83 86 FSDG 4 

100 106 IASRYDQ 7 

126 144 FFEGARILESISNVRHKDF 19 

172 191 IEDQGGAGSAGSHIKMRNAQ 20 

7 219 FYQ 3 
 

 

Table 2. Cytotoxic T-lymphocyte (CTL) epitopes of selected antigens prediction using CTLpred server (Combined approach; 
Cutoff Score=0.51). 

Antigen Position Sequence Score (ANN/SVM) 

KMP11 

7 FFADKPDES 0.990 

9 KFFADKPDE 0.980 

13 RLDEEFNRK 0.950 

LACK 

16 SHRLEGHTG 1.000 

78 KFLKHTKDV 1.000 

29 FVSCVSLAH 0.990 

GP63 

81 RILESISNV 1.000 

125 PQALQLHTE 0.990 

168 VRQVQDKWN 0.990 
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Table 3. L. infantum KMP11 binding to MHC-I alleles with highest score which obtained by the IEDB web server. 

Peptide Length Start End Allele 
Peptide 

index 
Core Icore Score 

KMHEHSEHF 9 65 73 HLA-B*15:01 1577 KMHEHSEHF KMHEHSEHF 0.960679 

HFKQKFAEL 9 72 80 HLA-B*08:01 1500 HFKQKFAEL HFKQKFAEL 0.955418 

LEQQKAAQY 9 81 89 HLA-B*44:03 1929 LEQQKAAQY LEQQKAAQY 0.907147 

LEQQKAAQY 9 81 89 HLA-B*44:02 1845 LEQQKAAQY LEQQKAAQY 0.901512 

MIKEHTEKF 9 54 62 HLA-B*15:01 1566 MIKEHTEKF MIKEHTEKF 0.889601 

RMIKEHTEK 9 53 61 HLA-A*03:01 389 RMIKEHTEK RMIKEHTEK 0.864294 

EFNRKMQAL 9 18 26 HLA-B*08:01 1446 EFNRKMQAL EFNRKMQAL 0.828076 
 

 

Table 4. L. infantum LACK binding to MHC-I alleles with highest score which obtained by the IEDB web server. 

Peptide Length Start End Allele 
Peptide 

index 
Core Icore Score 

HPIVVSGSW 
 

9 149 157 HLA-B*53:01 5093 HPIVVSGSW HPIVVSGSW 0.942054 

RTLKGHSNY 9 173 181 HLA-A*30:02 2233 RTLKGHSNY RTLKGHSNY 0.916730 

TLKGHSNYV 9 174 182 HLA-A*02:03 586 TLKGHSNYV TLKGHSNYV 0.913724 

RTLKGHSNY 9 173 181 HLA-B*57:01 5323 RTLKGHSNY RTLKGHSNY 0.856624 

KVWNVNGGK 9 162 170 HLA-A*03:01 986 KVWNVNGGK KVWNVNGGK 0.831140 
 

 

Table 5. L. infantum GP63 binding to MHC-I alleles with highest score which obtained by the IEDB web server. 

Peptide Length Start End Allele 
Peptide 

index 
Core Icore Score 

KVRQVQDKW 9 23 31 HLA-B*57:01 5398 KVRQVQDKW KVRQVQDKW 0.991967 

YLIPQALQL 9 9 17 HLA-A*02:01 224 YLIPQALQL YLIPQALQL 0.989888 

YLIPQALQL 9 9 17 HLA-A*02:03 439 YLIPQALQL YLIPQALQL 0.967609 

YLIPQALQL 9 9 17 HLA-A*02:06 654 YLIPQALQL YLIPQALQL 0.966576 

KVRQVQDKW 9 23 31 HLA-B*58:01 5613 KVRQVQDKW KVRQVQDKW 0.963771 

RILESISNV 9 131 139 HLA-A*02:06 776 RILESISNV RILESISNV 0.956299 

HEMAHALGF 9 114 122 HLA-B*44:03 4844 HEMAHALGF HEMAHALGF 0.938416 

RILESISNV 9 131 139 HLA-A*02:01 346 RILESISNV RILESISNV 0.923092 

FSNTDFVMY 9 55 63 HLA-A*01:01 55 FSNTDFVMY FSNTDFVMY 0.911191 

HEMAHALGF 9 114 122 HLA-B*44:02 4629 HEMAHALGF HEMAHALGF 0.910567 
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Table 6. L. infantum KMP11 binding to MHC-II alleles obtained by MHCPred v2.0 server (Prediction method: SVM). 

Allele Sequence Residue No. Peptide Score 

HLA-DR9 

RTEINLEIS 24 1.245 

KFERMIKEH 95 1.185 

EPRTEINLE 22 1.182 

FNRKMQALN 64 1.176 

HLA-DR3 

EEFSAPFKR 51 1.888 

RLDEEFNRK 59 1.546 

HEHSEHFKQ 112 1.325 

TEKFNKKMH 104 1.260 

HLA-DQ7 

GVKINETPL 2 1.439 

EMRANEPRT 17 1.413 

EFSAPFKRL 52 1.375 

NIAINFANT 36 1.084 

HLA-DQ8 

RKMQALNAK 66 2.077 

EPRTEINLE 22 1.736 

ISHMANIAI 31 1.675 

KQKFAELLE 119 1.618 

HLA-DRB1*0901 

PRTEINLEI 23 1.452 

STLSPEMKE 83 1.432 

HEHSEHFKQ 112 1.415 

DESTLSPEM 81 1.353 

HLA-DRB1*0401 

FANTMMATT 41 1.556 

GVKINETPL 2 1.136 

YEKFERMIK 93 1.099 

FFADKPDES 75 1.024 
 

 

Table 7. L. infantum LACK binding to MHC-II alleles obtained by MHCPred v2.0 server (Prediction method: SVM). 

MHC-II Alleles 

 

Predicted Epitopes 

 

IAb  VYDLESKAV, VTSLACPQQ, ATDYALTAS, GAALLWDLS, HKDNLIRVW 

IAd TAISWKANP, VATERSLSV, WVTSLACPQ, DRLIVSAGR, FSPDDRLIV 

IAs FVSCVSLAH, DGNTLYSGH, ICFSPSLEH, ATDYALTAS, RGWVTSLAC 

IEd RVWNVAGEC, RGWVTSLAC, FSPNRFWMC, RLIVSAGRD, VSCVSLAHA 

MHC-II Alleles Predicted Epitopes 
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Table 8. L. infantum GP63 binding to MHC-II alleles obtained by MHCPred v2.0 server (Prediction method: SVM). 

Allele Sequence Residue No. Peptide Score 

HLA-DR9 

KDFDVPVIN 178 1.297 

KRDILVKYL 38 1.272 

SVPSEEGVL 102 1.261 

VDEICGDFK 73 1.246 

HLA-DRB1*0101 

NIAINFANT 27 2.215 

VINIPAANI 128 1.671 

AINFANTMK 29 1.520 

LIPQALQLH 46 1.507 

HLA-DQ7 

SSTAVAKAR 187 1.632 

IPQALQLHT 47 1.415 

IPAANIASR 131 1.213 

PVINSSTAV 183 1.163 

HLA-DQ8 

CDTLEYLEI 200 1.921 

MKKRDILVK 36 1.864 

ISHMANIAI 22 1.675 

KKRDILVKY 37 1.574 

HLA-DR13 

VINIPAANI 128 1.468 

HPAVGVINI 123 1.271 

VGFFEGARI 160 1.269 

VGVINIPAA 126 1.267 

I-Ag7 

MAPAAAAGY 231 1.903 

ELMAPAAAA 229 1.857 

NIPAANIAS 130 1.814 

GFFEGARIL 161 1.785 

 

In summary, this process involved predicting and 
selecting potential binding epitopes for both MHC 
class I and II, using different servers and criteria to 
identify peptides with strong binding affinity to human 
HLAs. 

Leishmaniasis is widespread in subtropical regions, 
causing a significant burden annually (14). In spite of 
various chemotherapy and drug therapy against 
leishmaniasis which have some side effects, recent 
advances in development of efficacious vaccines 
seems to be an appropriate outstanding preventive 
strategy for improvement of the public health and 
infectious diseases control (15-17). 

Epitope-prediction is the first and most basic step in 
the design of multi-epitopic vaccines. Today, with the 
advancement of new methods in epitope mapping, 

computer tools have increased the accuracy and 
speed of this process. 

In order to make these predictions as accurate as 
possible, after determining the immunogenic proteins 
in Leishmania infantum, all three prediction modes of 
linear B-cell epitopes, CTL epitopes and epitopes of 
MHC class 1 and 2 should be determined. 
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